Расчетное сопротивление бетона: что такое, как рассчитать и нормативы?

6.2.3. Нормативные и расчетные сопротивления бетона

Нормативные сопротивления бетона – это сопротивление осевому сжатию бетонных призм (призменная прочность) Rbn и сопротивление осевому растяжению Rbtn, которые определяются в зависимости от класса бетона по прочности (при обеспеченности 0,95).

Расчетные сопротивления бетона получают путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

– расчетное сопротивление бетона осевому сжатию, где – коэффициент надежности по бетону при сжатии, зависящий от вида бетона.

– расчетное сопротивление бетона осевому растяжению, где – коэффициент надежности по бетону при растяжении, зависящий от вида бетона.

При расчете элементов конструкций расчетные сопротивления бетона Rb и Rbt в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы бетона γbi, которые учитывают следующие факторы: длительность действия нагрузки; многократную повторяемость нагрузки; условия, характер и стадию работы конструкции; способ ее изготовления; размеры сечения и т.д.

6.2.4. Нормативные и расчетные сопротивления арматуры

Нормативные сопротивления арматуры Rsn устанавливают с учетом статистической изменчивости прочности и принимают равными наименьшим контролируемым значениям предела текучести, физического или условного (равного значению напряжений, соответствующих остаточному относительному удлинению 0,2%). Доверительная вероятность нормативного сопротивления арматуры – 0,95.

Расчетные сопротивления арматуры растяжению определяют делением нормативных сопротивлений на соответствующие коэффициенты надежности по материалу:

,

где – коэффициент надежности по арматуре, зависящий от класса арматуры.

Расчетные сопротивления арматуры сжатию при наличии сцепления арматуры с бетоном: , но не более 400 МПа.

При расчете элементов конструкций расчетные сопротивления арматуры в отдельных случаях уменьшают или увеличивают умножением на соответствующие коэффициенты условия работы арматуры γsi, которые учитывают возможность неполного использования прочностных характеристик арматуры в связи с неравномерным распределением напряжений в сечении, низкой прочностью бетона, условиями анкеровки и т.д.

При расчете элементов на действие поперечной силы расчетное сопротивление растяжению поперечной арматуры снижают введением коэффициента условий работы в связи с неравномерным нагружением поперечных стержней γs1 = 0,8: .

6.2.5. Коэффициенты метода предельных состояний

Существуют 4 группы коэффициентов надежности.

I группа – степень ответственности зданий и сооружений. Эта группа определяется размером материального и социального ущерба при их преждевременном разрушении.

При проектировании конструкций следует учитывать коэффициент надежности по назначению , значение которого зависит от класса ответственности зданий и сооружений. На коэффициент надежности по назначению следует делить предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин или умножать на этот коэффициент расчетные значения нагрузок, усилий или иных воздействий. Установлены 3 класса ответственности зданий и сооружений:

1 класс здания и сооружения, разрушения которых приводит к очень серьезным последствиям (Чернобыльская АЭС, плотины, ГЭС, ТЭС);

2 класс здания и сооружения, не входящие в 1 и 3 классы.

3 класс различные склады, одноэтажные жилые дома, временные здания и сооружения.

Расчетное сопротивление бетона: что такое, как рассчитать и нормативы?

С точки зрения математической статистики прочность бетона или арматуры является величиной случайной, колеблющейся в опреде­лённых пределах.

Прочностные характеристики бетона в силу существенной неод­нородности его структуры обладают значительной изменчивостью. За нормативное сопротивление бетона осевому сжатию прини­мают предел прочности осевому сжатию бетонных призм размерами 150´150´600 мм с обеспеченностью 0,95. Эта характеристика кон­тролируется путём проведения испытаний.

Теоретическая кривая плотности распределения прочности бето­на при испытании большого количества образцов обычно представ­ляет собой кривую, соответствующую нормальному закону распределения случайных величин по Гауссу (рис. 33).

Рис. 33. К установлению значений нормативных и расчётных со­противлений бетона при сжатии

Под обеспеченностью понимают вероятность попадания случай­ных величин, выражающих прочность бетона, в интервал от до ∞. Таким образом, на рис. 33 обеспеченность, равная 0,95, выра­зится заштрихованной площадью, которая определяется как

(2.3)

Зная значение σ,можно назначить такое значение , частота появления которого была бы заранее задана

, (2.4)

где 1,64 – показатель надёжности, соответствующий обеспеченно­сти 95%; =0,135 – средний коэффициент вариации призменной прочности бетона, принятый по стране.

Если прочность бетона на осевое сжатие контролируется лишь на образцах в форме кубов, то определяют в зависимости от класса бетона по прочности на осевое сжатие В по формуле:

(2.5)

При отсутствии контроля класса бетона по прочности на осевое растяжение, когда Bt не определяется путём проведения испыта­ний, для определения нормативного сопротивления бетона осевому растяжению рекомендуется формула:

(2.6)

Расчётное сопротивление бетона осевому сжатию для расчёта по предельным состояниям первой группы получают по формуле:

(2.7)

где = 1,3 – коэффициент надёжности по бетону при сжатии.

Это расчётное сопротивление соотносится со средней призменной прочностью, полученной при испытании призм до раз­рушения, как:

(2.8)

Аналогично определяется расчётное сопротивление бетона осе­вому растяжению для расчёта по предельным состояниям первой группы

(2.9)

где – коэффициент надёжности по бетону при растяжении; = 1,3 – при систематическом контроле прочности бетона при осевом растяжении; = 1,5 – при отсутствии такового.

Численные значения расчётных сопротивлений и для раз­личных классов бетона даны в табл. 5.1 и 5.2 СП 52-101-2003.

Расчётные сопротивления бетона при расчёте по предельным со­стояниям первой группы назначены в нормах с высокой обеспечен­ностью равной 0,99865.

В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы (gbi), учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):

а) gb1 – для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rb и Rbt и учитывающий влияние длительности действия статической нагрузки:

gb1 = 1,0 – при непродолжительном (кратковременном) действии нагрузки;

gb1 = 0,9 – при продолжительном (длительном) действии нагрузки;

б) gb2 – для бетонных конструкций, вводимый к расчетным значениям сопротивления Rb и учитывающий характер разрушения таких конструкций. gb2 = 0,9;

в) gb3 – для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb. gb3 = 0,85.

Влияние попеременного замораживания и оттаивания, а также отрицательных температур учитывают коэффициентом условий работы бетона γb4 ≤ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 о С и выше, принимают коэффициент γb4 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно указаниям СП «Бетонные и железобетонные конструкции, подвергающиеся технологическим и климатическим температурно-влажностным воздействиям».

Наступление предельных состояний второй группы не столь опасно как первой, так как это обычно не влечёт за собой аварий, обрушений, жертв, катастроф. Поэтому расчётные сопротивления бетона для расчёта конструкций по предельным состояниям второй группы устанавливают при = = 1, т.е. принимают их равны­ми нормативным значениям

(2.10)

Как правило, здесь и = 1.

Показатели нормативного и расчетного сопротивления бетона

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.
Читайте также:  Сколько бетона получится из 50 кг цемента: расчеты и рекомендации

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

Заключение

Сопротивление бетона рассчитывается в зависимости от действия на него различных сил, которые могут быть сжимающими, поперечными, изгибающими, а также под местным сжатием. Для внецентренно сжатых и растянутых элементов, находящихся под изгибом, момент рассчитывается для сечений, перпендикулярных их продольной оси.

Для элементов с сечениями в виде прямоугольника, квадрата или тавра применяются формулы, предельной нагрузки каждого элемента, для других сечений используются специальные нелинейные диаграммы.

Расчетное сопротивление позволит подобрать класс прочности и марку этого материала для получения оптимальных эксплуатационных свойств массива, элемента или детали. В отличие от нормативных показателей, данные учитывают геометрические особенности, условия эксплуатации, виды деформаций. Вводятся коэффициенты надежности по бетону, разновидности используемой арматуры и другие характеристики, влияющие на конечную прочность зданий и сооружений, где применяется литой бетон или конструктивные элементы из этого материла.

Расчетное сопротивление бетона (в25, в20): осевому сжатию, растяжению

Конструкции из бетона возводятся с учетом того, что они смогут выдерживать большие нагрузки и не разрушаться. В проектной документации указываются все качества материала, включая сопротивление бетона сжатию, а также степень прочности, надежности, плотности и длительность службы бетонного изделия.

Бетон — это неоднородный материал, поэтому в каких-то местах он может быть менее прочным и не выдерживать возлагаемые на него нагрузки. Рассчитать его прочность необходимо для того, чтобы определить, какие значения имеет материал в норме.

Что такое расчетное сопротивление

Способность изделия противостоять различным механическим нагрузкам показывает расчетное сопротивление бетона.

Значения, которые получаются при расчете, обозначают аббревиатурой RB и RBT, они необходимы для разработки проектов для различных коммерческих и промышленных объектов. Это значение получается из показателей по норме противодействия нагрузкам указанной марки бетона посредством деления на табличный коэффициент γbi.

Узнать точное расчетное сопротивление бетона сжатию можно с помощью таблицы, которая содержит цифры математических расчетов, использующихся для строительства различных объектов.

Этот коэффициент может быть выражен в таких цифрах:

  • 1,3 — для наибольших показателей по несущей способности;
  • 1 — для наибольших величин по эксплуатационной пригодности.

Надежность бетона при физическом растяжении γbt выражается в таких коэффициентах:

  • 1,5 — для наибольших показателей несущей способности бетона при установлении его класса на степень сжатия;
  • 1,3 — для наибольших показателей несущей способности на степень растяжения по оси;
  • 1 — для наибольших показателей по эксплуатационной способности.

Для того чтобы узнать точное расчетное сопротивление бетона осевому сжатию, следует определить его класс.

Из табличных данных следует взять показатели по норме и рассчитать по формуле Rb=Rbn/γb, где:

  • Rb — расчетные цифры сжатия по оси;
  • Rbn — множитель по норме;
  • γb — табличный коэффициент.

Сопротивление бетонных изделий осевому растяжению считается по формуле Rbt=Rbtn/γbt, где:

  • Rbt — расчетные цифры на растяжение по оси;
  • Rbtn — множитель по норме;
  • γbt — табличный коэффициент.

В зависимости от факторов, которые будут влиять на эксплуатационные способности бетонных изделий, могут применяться и другие коэффициенты γbi:

  • 1 — для кратковременных нагрузок;
  • 0,9 — для нагрузок, которые действуют длительное время;
  • 0,9 — для изделий, которые заливаются вертикально;
  • коэффициенты, которые указывают природные условия, назначение бетонного изделия и площадь сечения, в проекте прописываются отдельно.

Нормативное сопротивление

Ранее качеством бетона, отражавшим его противодействие различным видам нагрузок, была марка М. Затем ввели другое свойство, которое получило название класса прочности В. Определить свойства бетонных элементов и ЖБК можно по нормативам, указанным в СП.

Для того чтобы узнать, к какому классу принадлежит бетон, его подвергают испытаниям:

  1. Раствор заливают в кубическую емкость высотой 15 см.
  2. Затем его уплотняют и оставляют на 28 суток до окончательного затвердения. Температура должна быть +18…+20ºС.
  3. После этого бетон испытывают путем разрушения под прессом.

Также образец проверяют на растяжение по оси. Это необходимо сделать при расчете сопротивления БК.

Таблицы содержат классы бетона и их значения по норме, поэтому испытания проводить не нужно.

Вид сопротивленияНормативные и расчетные показатели для бетона 2 группы на сжатие
класс В1015202530354045505560
сжатие по оси7,5111518,52225,529323639,543
растяжение по оси0,851,11,351,551,751,952,12,252,452,62,75

В таблице представлены значения бетона растяжению. Они необходимы при составлении проектной документации.

Читайте также:  Теплопроводность бетона: показатели теплоотдачи

Показатели могут изменяться в зависимости от различных условий, которые определяются коэффициентами.

Вид сопротивленияРасчетные показатели RB и RBT 1 группы класса на сжатие
класс В1015202530354045505560
сжатие по оси RB68,511,514,51719,5222527,53033
растяжение по оси RBT0,560,750,91,051,151,31,41,51,61,71,8

Таблица показывает, что расчетные сопротивления бетона растяжению и сжатию меньше констант по норме, т. к. они учитывают и другие факторы, такие как:

  • тип воздействия на сооружение;
  • расположение центра тяжести объекта;
  • неоднородность материала.

Определяя противодействие материала нагрузкам, следует учитывать степень его возможной деформации. Для этого берут первоначальное значение этого показателя и делят на коэффициент, который состоит из степени ползучести, возможной деформации изделия в поперечнике и деформации при температурном колебании (-40…+50ºС).

Понятия прочности и класса

До появления европейских стандартов прочность определялась только по марке, и она показывала среднюю цифру сопротивления на сжатие. Новые стандарты предусматривают определение классов по прочности на степень сжатия и растяжения.

Класс — это один из главных показателей, который определяет срок службы БК. Определяя класс, учитывается как сжатие элемента по оси, так и растяжение бетона, показатели, которые рассчитываются, учитывая запас прочности посредством его сопротивления в удельных единицах измерения.

По формуле рассчитывается возможность сопротивления конструкций из бетона сжатию: R=Rn/g, где g — коэффициент степени прочности, который принимается за 1 при условии, что структура раствора является однородной.

Для расчетов берут и дополнительные данные, такие как:

  1. Удельное электросопротивление раствора.
  2. Влагостойкость. С помощью этих показателей определяется наибольшее давление жидких субстанций, которые способны выдержать ЖБК.
  3. Воздухопроницаемость. Она имеет отношение к прочности, и ее постоянное значение колеблется от 3 до 130 с/см³.
  4. Морозоустойчивость. Обозначается латинской буквой F, а цифры от 50 до 1000 указывают число замораживаний и размораживаний.
  5. Теплопроводность. Чем больший объем воздуха содержит изделие, тем меньше его плотность и теплопроводные характеристики.

Трещины по вертикали в тестируемых изделиях из призмы возникают под действием силы тяжести поперечных нагрузок. Прочностные качества бетона увеличиваются при его стягивании металлическими обручами.

Она укладывается в раствор горизонтально:

  1. Марка указывает среднюю степень прочности куба раствора RB и выражается в кг/см².
  2. Класс указывает на прочность куба раствора с точностью до 0,95 и выражается в Мпа. Неоднородность его прочности варьируется от Rmin до Rmax.

Бетон класса В20 относится к виду «тяжелых» и используется в различных областях строительства, т. к. имеет высокую степень прочности, обеспечивая длительный срок эксплуатации различных промышленных и жилых объектов. Благодаря его прочности конструкции имеют высокую степень сопротивления сдвигам и нагрузкам на изгиб. Такие изделия смогут выдерживать наибольшие нагрузки.

Прочность бетона класса В25 составляет 327 кгс/см², поэтому он предназначен для заливки фундамента, изготовления плит, балок и других монолитных изделий.

Предварительно напряженные железобетонные конструкции

Это ЖБК, которые нагружены искусственно сформированными напряжениями внутри конструкций и направлены назад существующим нагрузками, возникающими в процессе их эксплуатации. Такие напряжения возникают после того, как внутрь конструкции была установлена арматура.

Делается это таким образом:

  1. Заливая раствор в емкости, оставляют пустоты, в которые затем укладывают арматуру. Конструкция набирает прочности после того, как арматура натягивается и закрепляется по всем бокам изделия. При этом бетон сжимается. Натяжение обозначается буквой «P».
  2. Перед тем как залить раствор, натягивают арматуру, т.е. создают натяжение на упоры, а после того, как смесь затвердеет, ее отпускают, в результате чего создается напряжение сжатия.

Сопротивление можно определить в зависимости то того, какие на него действую силы тяжести.

Они бывают:

  • сжимающими;
  • поперечными;
  • изгибающими.

Для изделий, которые сжимаются и растягиваются вне центра, а также находятся под изгибом, показатель определяется для сечений, расположенных перпендикулярно их вертикальной оси.

Для прямоугольных, квадратных или тавровых сечений конструкций используются формулы, по которым рассчитывается предельная нагрузка каждой детали. Для других типов сечений применяются различные виды диаграмм.

Кроме этого, применяются коэффициенты степени надежности материала, виды используемой арматуры и прочие параметры, которые могут повлиять на итоговую прочность конструкции, где использовался литой бетон.

Расчетное и нормативное сопротивление бетона сжатию и растяжению

Наряду с плотностью, морозоустойчивостью и водонепроницаемостью важную роль в характеристике бетонной конструкции имеет расчетное сопротивление бетона. Необходимость определения этого расчетного коэффициента обусловлена неоднородностью стройматериала и различными свойствами каждого участка. Показатель характеризует способность материала выдерживать высокие механические нагрузки сжатия или растяжения без повреждения структуры поверхности.

Что собой представляет?

Стоимость материала непосредственно зависит от класса бетона, поэтому чтобы сэкономить, не рекомендуется делать большой запас по прочности.

Несколько образцов бетонной смеси из одинакового сырья могут иметь различные качественные характеристики. Поэтому для отображения более точной картины качества стройматериалов определяется расчетное сопротивление. Это необходимо, чтобы уменьшить риск повреждения бетонного объекта. На показатель влияет класс бетона, расчетная величина ниже нормы. При проведении расчетов рационально учитывать коэффициент условий работы, зависящий от таких факторов:

  • продолжительность воздействия нагрузки;
  • статичность нагрузки;
  • характер, условия и стадия эксплуатации конструкции;
  • метод производства;
  • величина сечения.

Расчетное сопротивление бетона для предельных состояний на сжатие и растяжение.

Нормы показателя

До 2001 года прочностные свойства бетона характеризовались по его марке. В соответствии с этой характеристикой определена и норма сопротивления, сведенная в таблицу. Проектная документация имеет сведения о нормативном значении, характерном классу бетона. Этот показатель вычисляется по устойчивости осевому сжатию образцов материала. Для исследования изготавливают кубы с длиной ребра 15 см. Нормативное сопротивление характеризуется двумя значениями, когда образцы с максимальной прочностью подвергаются осевому сжатию или растяжению до начала разрушающих процессов. Второй показатель чаще всего не измеряют, а используется таблица соответствия коэффициента классу стройматериала:

Класс бетонаСопротивление (МПа)
В100,85
В7,50,70
В50,55
В3,50,39

​​​​​​Как определить?

Нормативное сопротивление является базовым, на основании которого, в зависимости от однородности исследуемых образцов, вычисляют прочностные характеристики. Проверка осуществляется разрушающими или неразрушающими методами. Во втором случае используются специальные приборы, предназначенные для этого. Если имеются подготовленные образцы, исследование проводится в лабораторных условиях. Значение нормы делится на коэффициент, характеризующий качество стройматериала. Как правило, он составляет 1,3, но с уменьшением однородности увеличивается его величина. Чаще всего эти расчеты не проводятся, а опытные специалисты пользуются данными СНиП 2.06.08—87.

Как регулируется?

Для увеличения устойчивости искусственного камня растяжению применяется армирование, поэтому берутся ко вниманию расчетные сопротивления арматуры и предел текучести металла.

Так как величина расчетного сопротивления бетона напрямую зависит от однородности состава, то в первую очередь рекомендуется использовать высокопродуктивные бетономешалки. Кроме этого, широко пользуются популярностью специальные вещества, способствующие повышению прочности и улучшению других качественных характеристик материала. При длительной транспортировке смеси или заливке больших объектов рекомендуется использовать добавки, способствующие замедлению затвердения бетона. Это позволяет сделать бетонную конструкцию более однородной, а соответственно увеличит ее расчетное сопротивление.

Интересные и нужные сведения о строительных материалах и технологиях

Нормативные и расчётные характеристики

Так как вследствие неоднородности бетона и других случайных факторов действительная прочность бетона может существенно отличаться от среднестатистической Rm, в расчёт вводят показатели прочности, задаваемые с определённой надёжностью.

В качестве основных, базисных (контролируемых), характеристик бетона приняты нормативное сопротивление осевому сжатию призм (призменная прочность) Rbn со статистической обеспеченностью 0,95 или ее гарантированной доверительной вероятностью 95%, и нормативное сопротивление осевому растяжению Rbtn.

Нормативные значения призменной прочности бетона определяют по следующим зависимостям:

для тяжёлого (обычного), мелкозернистого и лёгкого

Таким образом, класс бетона В можно трактовать как нормативное сопротивление осевому сжатию эталонных образцов-кубов (кубиковая прочность) в отличие от Rbn, отражающего призменную прочность бетона.

Численные значения Rhn (с округлением) в зависимости от класса бетона по прочности на сжатие приведены в табл. 1.14.

Нормативное сопротивление бетона осевому растяжению в случаях, когда прочность бетона на растяжение не контролируется, принимают в зависимости от класса бетона по прочности на сжатие в соответствии с табл. 1.14, при контроле класса бетона по прочности на осевое растяжение — равным гарантированной прочности (классу) на осевое растяжение.

Расчетное сопротивление бетона осевому сжатию — такая же характеристика, как и нормативное сопротивление, однако ее обеспеченность составляет: для расчета по предельным состояниям первой группы Rb — 0, 997, второй группы Rbser — 0,95.

Расчетные сопротивления бетона определяют путём деления нормативных сопротивлений на соответствующие коэффициенты надёжности по бетону при сжатии или при растяжении, учитывающие возможность понижения фактической прочности по сравнению с нормативными значениями, а также возможное отличие прочности бетона в конструкции от прочности в образцах. Такой подход к установлению определяющих надёжность конструкций расчётных сопротивлений называют полувероятностным. Указанные коэффициенты надёжности по бетону принимают равными:

для тяжёлого (обычного), мелкозернистого и лёгкого бетонов при сжатии = 1,3; при растяжении с контролем прочности = 1,3; без контроля прочности при растяжении = 1,5; для ячеистого бетона уЬс = 1,5; (контроль прочности ячеистого бетона при растяжении отсутствует).

Выше приведены были коэффициенты надёжности по бетону при расчёте конструкций по предельным состояниям первой группы.

Таким образом, значения расчётных сопротивлений для предельных состояний второй группы численно равны нормативным сопротивлениям бетонов — см. табл. 1.14. Это связано с тем, что наступление предельных состояний второй группы не столь опасно, как первой (обычно не влечёт за собой аварий, катастроф или человеческих жертв).

Более высокие значения коэффициентов надёжности для ячеистого бетона обусловлены повышенной изменчивостью его прочностных свойств, а также повышенной чувствительностью к технологии изготовления изделий (большим различием между прочностью бетона в конструкции и в контрольных образцах).

Как уже отмечалось выше, обеспеченное гь нормативного сопротивления и расчётного сопротивления для предельных состояний второй группы в каждой партии бетона должна составлять не менее 0,95, а расчетного сопротивления для предельных состояний первой группы — не мснсе 0,997.

Расчётные сопротивления бетона для предельных состояний первой группы Rb и Rhr следует умножать на коэффициенты условий работы бетона, учитывающие особенности свойств бетона, продолжительность действия нагрузки и её многократную повторяемость, условия и стадию работы конструкции, способ её изготовления, размеры сечения и т. п.

Расчетные сопротивления бетона для предельных состояний второй группы вводят в расчёт с коэффициентом условий работы, за исключением тех случаев, когда расчёт производят на действие многократно повторных нагрузок.

Численные значения расчётных сопротивлений (с округлением) в зависимости от класса бетонов по прочности па сжатие и осевое растяжение для предельных состояний первой и второй групп приведены в табл. 1.14 и 1.16.

Расчётные сопротивления бетона для предельных состояний первой группы (см. табл. 1.15 и 1.16) в определённых случаях следует умножать на коэффициенты условий работы.

Указанные коэффициенты в основном учитывают изменение свойств бетона, рассмотренные в разделе 1.1.2. Ниже перечислены коэффициенты и условия, при которых их необходимо учитывать.

1) — учитывает снижение прочности бетона при действии многократно повторных нагрузок; числовые значения можно принимать по табл. 1.18; учитывают при расчёте на выносливость и по образованию трещин;

2) уb2 учитывает длительность действия нагрузок, т. е. различие между кратковременным и длительны ч сопротивлением бетона, а также влияние нарастания прочности бетона во времени:

а) при учёте постоянных, длительных и кратковременных нагрузок, кроме нагрузок непродолжительного действия, суммарная длительность действия которых за период эксплуатации мала (например, крановые нагрузки; нагрузки от транспиртныхсредств; ветровые нагрузки; нагрузки, возникающие при изготовлении, транспортировании и возведении и т. п.), а также при учёте особых нагрузок, вызванных деформациями просадочных, набухающих, вечномерзлых и подобных грунтов для тяжелого, мелкозернистого и легкого бетонов естественного твердения и подвергнутых тепловой обработке; в условиях эксплуатации конструкций, благоприятных для нарастания прочности бетона (например, под водой, во влажном грунте или при влажности воздуха окружающей среды выше 75 %) = 1.00; в остальных случаях = 0,90; для ячеистого и поризованного бетонов независимо от условий эксплуатации = 0,85;

б) при учёте в рассматриваемом сочетании кратковременных нагрузок непродолжительного действия (суммарная длительность которых мала — см. выше) или особых нагрузок, кроме указанных в п.2а, для всех видов бетона и вне зависимости от условий эксплуатации . = 1,10; коэффициент учитывают при расчёте по прочности; если при учёте особых нагрузок вводят дополнительный коэффициент условий работы согласно указаниям соответствующих нормативных документов (например, при учёте сейсмических нагрузок), следует принять . = 1,00;

3) yb3 — учитывает изменение плотности и прочности бетона по высоте вертикально бетонируемых элементов; численные значения принимают при высоте слоя бетонирования более 1,5 м для бетонов: тяжёлого, мелкозернистого и лёгкого уb3 = 0,85; ячеистого и поризованного уb3 = 0,80;

4) Уb4 учитывает влияние двухосного сложного напряжённого состояния сжатие-растяжение на прочность бетона; численное значение коэффициента определяют по формуле (5.48);

5) уb5 – учитывает повышенное влияние дефектов (раковин, недоуплотнения и др.) в сечениях небольших размеров; при бетонировании монолитных бетонных столбов и железобетонных колонн с наибольшим размером поперечного сечения менее 300 мм = 0,85;

6) уb6 учитывает влияние попеременного замораживания и оттаивания на прочность бетона; численные значения коэффициента принимают по табл. 1.21;

7) уb7 — учитывает снижение прочности бетона при длительном его нагреве до температуры около 50 °С в сухом жарком климате; при эксплуатации конструкций, не защищённых от солнечной радиации, в климатическом подрайоне = 0,85;

8) уЬ8 — учитывает кратковременность процесса предварительного обжатия и пониженные потери преднапряжения при расчёте на прочность в стадии обжатия: для конструкций из лёгкого бетона с проволочной арматурой = 1.25; для конструкций из остальных видов бетона с той же арматурой = 1.10; для конструкций из лёгкого бетона со стержневой арматурой = 1.35; для конструкций из остальных видов бетона с той же арматурой = 1.20;

9) уb9 — учитывает несовершенство существующих способов оценки неупругих свойств бетона в неармированных конструкциях

10) уb10 — учитывает повышенную хрупкость высокопрочных бетонов;

11) уb11 — учитывает влияние влажности ячеистого бетона на его прочность;

12) yb12 — учитывает связанные условия поперечного расширения бетона в шве при замоноличивании стыков (ограничения, накладываемые сопрягаемыми конструкциями); при толщине шва замоноличивания стыков сборных элементов менее 1/5 наименьшего размера сечения элемента и менее 100 мм = 1,15.

Для отдельных видов лёгкого бетона допустимо принимать иные значения расчётных сопротивлений, согласованные в установленном порядке.

Для бетона на глинозёмистом цементе и поризованного нормативные и расчетные сопротивления его растяжению снижают на 30% против значений, приведенных в табл. 1.14 и 1.15.

Начальный модуль упругости бетона Еb при сжатии и растяжении принимают по табл. 1.18 и 1.19. Для бетонов, работающих в условиях попеременного замораживания и оттаивания, приведенные в этих таблицах значения Еb следует умножать на коэффициент уb6.

Для незащищенных от солнечной радиации конструкций, предназначенных для эксплуатации в климатическом подрайоне IVA согласно СНиП 2. 01. 01-82, значения Eh, указанные в табл. 1.18 и 1.19, следует умножать на коэффициент 0,85.

лёгких бетонов определяют с учетом отпускной объёмной влажности по формуле D + 10w, где величину w принимают равной: для лёгкого бетона класса В10 и ниже = 15% ; для поризованного бетона тех же классов = 20%; для лёгкого бетона класса В12,5 и выше = 10%.

Читайте также:  Интересное о бетоне: древние сооружения и в наше время
Добавить комментарий