Морозостойкость бетона: маркировка, определение и как увеличить?

Характеристика бетона по морозостойкости

Такая характеристика стройматериала, как морозостойкость бетона, определяет его способность выдерживать при насыщении влагой циклы замораживания и оттаивания, не потеряв при этом прочности. Вода при минусовых значениях увеличивается в объеме и не дает свободный выход ее в поры, что приводит к избыточному давлению в бетонных слоях. Устойчивость к экстремальным метеорологическим показателям проявляется в структуре пор, что подразделяют на морозостойкие марки для выбора состава, соответствующего эксплуатационным условиям.

Виды морозостойкости материала

Этот показатель определяется коэффициентом F. Марки бетона по морозостойкости согласно ГОСТа 10060.0—95 разделены на 11 подвидов, которые изменяются в пределах от F25 и до F1000 и зависят от вида конструкции. Чем меньше макропор в слое, тем больше его морозоустойчивость. Плотность бетонной поверхности увеличивается в таких случаях:

Для каждой марки материала этот показатель будет другим.

  • Снижают показатели соотношения воды и цемента и вводят в смесь пластификаторы непосредственно для снижения расхода водной составляющей.
  • Раствор готовят исключительно из чистых и сухих заполнителей (песок, щебень).
  • Правильно подобран режим и температура твердения готовой смеси.
  • Используют виброуплотнение.
  • Замораживание происходит после достижения бетона его окончательной прочности.

Определение свойства

В официальных нормативных документах, описывающих свойство материала выдерживать перепады температур, его определяют количеством переходов за 1 цикл через нулевую отметку, после которого начинается значительное снижение всех эксплуатационных характеристик. Для определения морозостойкости извлеченный образец бетона в форме кубика 10 на 20 см в машине заморозки подвергают многократным циклам при разных режимах (от +18 °C до -18 на протяжении 3 часов). После окончания проводят лабораторный анализ на прочность. Если показатели остались в пределах допустимого, значит такой бетон можно использовать в агрессивных средах. Испытание бетона на морозостойкость проводят согласно ГОСТа 10060.1—95 с подпунктами 1, 2, 3 и 4. Исходя из этого присваивают маркировку: F100 — выдержит 100 циклов, F150 соответственно цифровому значению после коэффициента.

Бетон F300 рекомендовано применять в строительстве, в средней полосе с возможными частыми перепадами минусовых и плюсовых температур.

Методы повышения морозостойкости

Чтобы изменить параметры материала, вводят воздухововлекающие добавки в бетонное тесто для пористости. Это делают для того, чтобы обеспечить до 6% дополнительных пор, которые не станут заполняться водой при насыщении, а только при контакте с холодом и жидкостью. Такой метод с применением гидрофобных добавок бывает нескольких видов: ГКН-10, ГКН-11. Важное значение имеет класс цемента с минеральными добавками (глиноземистый или портландцемент). Чтобы повысить показатели прочности также применяют мероприятия, направленные на растяжение материала.

Добавки в раствор

Морозостойкость бетона повышают, добавляя в бетонную смесь ПАВ с воздуховолечением и газообразованием. Первые создают шарообразные поры. Влага под отрицательным давлением попадает в эти воздуховоды, в которых кристаллики льда при увеличении не нарушают целостность бетона. Газообразующие добавки увеличивают скорость твердения, делая состав максимально плотным. А также они способны понижать температуру замерзания жидкости до -10 °С (NaNO2, NH3). Их использование позволяет добиться прохождения процесса таким образом, как и при плюсовых показателях температур. Широко известны добавки от фирм-производителей «Гидротэкс-ПМД» и «Конкорд ОСТ».

С помощью такого компонента материал будет затвердевать с такой же скоростью, как и в теплое время года.

Увеличение возраста бетонной поверхности

Отсроченное на долгий срок замораживание влияет как на сужение количества пор, так и на его водонепроницаемость В, которая также оказывает большое влияние на прочность. Например, в отличие от материалов более легких марок, бетон В25 имеет повышенное содержание цементного вяжущего, что и обусловливает его способность сопротивляться разрушению.

Уменьшение количества воды

Морозостойкость бетона, который является гидрофильным капиллярно-пористым телом, характеризуется связями влаги от количества частиц. Используя чистые добавки, снижают потребность в водной составляющей без нарушения его свойств. Характеристики бетона W12 показывают, что он является наиболее водоупорным за счет выдерживания давления воды 164 кгc/cм. Широко применяют и W4, W6, W8 из-за его повышенной водонепроницаемости. В основном обычные бетоны имеют марку по водонепроницаемости ниже 2.

Снижение пористости

Специальные добавки для бетонных смесей изменяют характеристику теста. Чтобы добиться снижения макропористости и получить морозостойкий бетон, нужно расстояние прослоек пузырьков воздуха между рядом лежащими порами держать в пределах не более 0,025 см. Значит, вовлекать можно 4,6% газа к цементному составу для сохранения физико-химических свойств получаемого стройпродукта.

Гидроизоляция верхнего слоя

Для повышения свойств морозостойкости защищают поверхность от попадания излишней влаги. В результате чего, в порах образуются кристаллические структуры. Они не дают проникнуть жидкости внутрь. Если же постройка круглый год подвержена воздействию снега, дождей, тогда рекомендуют применять поверх слоя бетона пропитки полимерами или краску, которые создают пленку на поверхности.

Заключительное слово

Разновидность цементных составов при выборе велика. Бетон В15 — популярный тип материала, применяемый во всех видах строительства благодаря характеристикам. Известно, что вода может делать бетонное основание хрупким, а это несомненно отобразится на устойчивости к неблагоприятным атмосферным явлениям. Правильный же выбор гидроизоляции и добавок, а также переход на использование высокого класса цемента обеспечит многолетнюю эксплуатацию конструкции без разрушения.

Как определяется морозостойкость бетона по маркам и классам, испытание и повышение показателей

Морозостойкость бетона позволяет материалу сохранять эксплуатационные характеристики после повторного замораживания с последующим оттаиванием и не утрачивать физико-химических свойств.

Такое качество должно быть у смесей, которые применяют при возведении фундамента, укреплении тяжелых конструкций и др. Низкий показатель снижает несущие способности, ускоряет износ поверхности.

Маркировка

Определение требований морозоустойчивости бетона производится с учетом климатических условий (в Москве и Новосибирске они будут разными), глубины промерзания грунта, скорости изменения температуры окружающего воздуха.

На основании ГОСТ 10060-2012 существует 5 классов морозоустойчивости:

  1. Низкий показатель (F50) подходит лишь для работ внутри теплых помещений. Раствор с таким значением применяют редко, под действием негативных факторов внешней среды на нем быстро станут появляться трещины.
  2. Нормальная устойчивость (F150) подходит для сооружения зданий в местностях, где климат умеренный или теплый. Такие постройки могут служить, не разрушаясь, в течение 100 лет.
  3. Повышенный показатель (от F150 до F300) предназначен для местностей с суровыми условиями климата и глубоким промерзанием грунта (Сибирь). Материал способен выдерживать резкие перепады температур, в течение длительного времени сохраняет эксплуатационные характеристики.
  4. Морозостойкий бетон с показателем от F300 до F500 можно использовать в северных областях, где отмечается глубокое промерзание грунта и в местностях, где уровень воды может повышаться.
  5. Смесь с показателями F500-1000 имеет высокую устойчивость, используется для сооружения наиболее ответственных объектов. Применяют высокие марки бетона, в который вводят специальные добавки.

Маркировка производится после того как образец бетона опускают в воду, выдерживают в течение некоторого времени, затем замораживают до -18°С. Периодически проводят замеры для выявления потери прочности.

С помощью маркировки облегчается выбор бетона при выполнении строительных работ.

Способы определения показателя

В соответствии с ГОСТом имеются характеристики бетона, оказывающие влияние и обеспечивающие надежность возведения конструкций в заданных условиях:

  • водонепроницаемость;
  • прочность;
  • морозостойкость.

Существует регламент для определения показателя (ГОСТ 10060-2012) устойчивости к морозу. В технической документации представлены 4 способа, позволяющие определить этот показатель.

Испытание бетона на морозостойкость заключается в неоднократном замораживании и размораживании смеси. Для проведения исследования берут несколько образцов (базовые и контрольные).

Образцы в лабораторных условиях подвергаются многократным циклам замораживания с последующим оттаиванием. Для проведения испытаний требуются:

  • камера для заморозки;
  • контейнеры с водой.

После нескольких циклов нагревания (до +180°С) и заморозки (до -130°С) измеряют прочность материала. Испытание бетона на прочность считается положительным, если образец сохраняет свои качества.

Проводимые в лабораториях исследования не имеют высокой точности: иногда пробный образец разрушается, но при эксплуатации в природных условиях сохраняет необходимую прочность. В лаборатории на материал производится максимальное воздействие, это приводит к более быстрому разрушению.

Для определения морозостойкости бетона обращают внимание на внешний вид и состояние раствора:

  • присутствие крупных зерен, расслаивание, появление трещин и пятен свидетельствуют о недостаточном качестве продукта, низкой морозоустойчивости;
  • растрескивание под действием лучей солнца также указывает на недостаточную устойчивость к действию низких температур;
  • появление расщелин подтверждает слабую морозостойкость.

Характеристика устойчивости к морозу становится наиболее важной для фундамента в почвах с высоким уровнем влаги, при строительстве мостов и прочих гидросооружений.

Повышение морозоустойчивости бетона

Учитывая, что на большинстве территорий России климат суровый, вопрос, как повысить морозостойкость бетона, является злободневным. На данный показатель влияют:

  • количество и размеры пор в структуре;
  • состав цемента;
  • прочность на растяжение.
Читайте также:  Огнезащита железобетона / бетона: требования, методы защиты и технология

Зная, от чего зависит устойчивость к морозу, повысить качество можно с помощью нескольких методов:

  1. Уменьшения количества влаги в смеси, использования незагрязненных наполнителей или специальных добавок.
  2. Уменьшения макропористости. Это требует создания условий для быстрого затвердевания раствора и использования добавок, уменьшающих потребность в количестве влаги.
  3. Применения заморозки смеси в позднем возрасте.
  4. Изоляции для предотвращения воздействия негативных условий (с помощью красок и пропиток, повышающих срок эксплуатации изделий из бетона).
  5. Применения химических присадок (растворы соляной, угольной, азотной кислот). Они способствуют увеличению числа мелких пор, в которые вода попасть не может.

Работа со структурой

Чтобы увеличить значение морозостойкости, можно повлиять на структуру. Для достижения эффекта пользуются несколькими способами:

  1. Замораживают конструкцию после полного отвердевания на четвертой неделе. Это приводит к тому, что уменьшается количество пор в результате исчезновения пузырьков воздуха.
  2. Тщательно утрамбовывают раствор в процессе укладки. Рабочая масса при этом уплотняется, избавляясь от воздуха.
  3. Сокращают количество воды при замешивании раствора. Чтобы получить нужный эффект, необходимо использовать заполнители, в которых отсутствуют загрязнения и пыль.

Гидроизоляция

С целью повышения устойчивости бетона к морозу гидроизоляцию не используют. Однако защита конструкции от доступа воды повышает устойчивость материала к перепадам температур. Материал в сухом виде легче переносит сильные морозы, его эксплуатационные свойства страдают меньше.

Вода является главным разрушителем бетона в результате замораживания: превратившись в лед, она изнутри нарушает структуру. Удалив источник влаги, можно предотвратить дальнейшее разрушение конструкции.

Гидроизоляция выполняется несколькими способами:

  1. Наиболее простой считается рулонная. На поверхности (вертикальные или горизонтальные) настилают полотна, произведенные на основе битума. Все швы обрабатывают горелкой или мастикой.
  2. Проникающая — позволяет укрепить поверхность конструкции и уплотнить ее для предупреждения проникновения воды.
  3. Обмазочную нередко используют вместе с рулонной, т. к. в качестве самостоятельного метода защиты она не является долговечной.

Присадки

Класс бетона по морозостойкости можно существенно увеличить за счет применения пластифицирующих добавок. Назначение у них разное:

  1. Специальные, повышающие морозоустойчивость. Их принцип действия основан на изменении структуры пор до наименьших
  2. Комплексные используют с целью улучшения сразу нескольких свойств продукта: водонепроницаемости, плотности, устойчивости к перепадам температур.
  3. Для предотвращения попадания в структуру материала воды и разрушительного воздействия на конструкцию применяют гидрофобизаторы.

Для повышения класса бетона по данному показателю используют следующие присадки:

  1. Ускоряющие процесс затвердевания, способствующие быстрому уплотнению структуры (нитрат натрия, нитрат кальция). Влияют на время, которое требуется раствору для схватывания. Позволяют ускорить возведение конструкций за счет снижения времени затвердевания.
  2. Замедляющие отвердевание, позволяющие воздушным пузырькам выйти (мочевина).
  3. Универсальные (суперпластификатор С3, состоящий из смеси солей натрия и полиметиленнафталинсульфокислот). Влияют на подвижность бетона, оказывая воздействие на водонепроницаемость и прочность. Уменьшают расход цемента.
  4. Модификаторы — способны существенно повышать показатели прочности. Одновременно увеличивают устойчивость к коррозии и действию низких температур.
  5. Комплексные добавки, повышающие прочность, плотность, морозостойкость (лигносульфаты). Вместе с тем оказывают влияние на несколько эксплуатационных характеристик: могут снижать расход воды, увеличивать устойчивость к коррозии и морозу, замедлять процесс затвердевания.

Присадки с наличием хлорида уменьшают устойчивость арматуры к действию коррозии, но добавки, в основе которых имеется нитрит натрия, задерживают этот процесс.

Улучшаем стойкость бетона к заморозкам

Морозостойкость бетона – это важный показатель материала для строительства фундаментов и любых конструкций, подвергаемых сезонному замораживанию/оттаиванию. Значение определяется лабораторными испытаниями образца раствора. Особенно важно учитывать параметр морозостойкости в регионах, где зима длится большую часть года.

Методы определения

Морозостойкость бетона – это количество циклов замораживания и оттаивания бетонного образца в насыщенном водой состоянии без потери прочности не более 5%. Чем выше значение, тем больший срок службы конструкции в первозданном виде с заданными характеристиками.

Методы определения стойкости бетона к морозам описаны в межгосударственном стандарте ГОСТ 10060-2012. Согласно документу образцы для основного и дорожного строительства осуществляют с использованием разных насыщающих сред:

  • F1 – насыщенный водой образец (основной);
  • F2 – насыщенный 5%-ым водным раствором хлорида натрия (дорожные и аэродромные камни).

Определение морозостойкости бетона проводят только при достижении кубиками проектной прочности, то есть чрез 28 дней. Образцы 100×100×100 или 150×150×150 мм охлаждают до отрицательных температур обычным или ускоренным способом, затем размораживают. Проверку прочности осуществляют после каждого пройденного цикла.

По результатам исследования бетону присваивается марка по морозостойкости F. Индекс за ней означает полное количество циклов до потери камнем прочности не более 5%.

Применение бетона в зависимости от марки

Морозоустойчивость определяется составом бетонного раствора, который может изменяться в зависимости от эксплуатационных потребностей. Чтобы создать конструкцию достаточного качества и не переплачивать за добавки в бетон, материал подбирают в соответствии с областью применения. Кроме того, показатели прочности и морозостойкости взаимосвязаны друг с другом*:

Маркировка морозостойкостиМарка прочностиНазначение материала
F50 и нижеМ100-150Низкая водостойкость и морозоустойчивость. Бетон используют преимущественно внутри помещений или под навесами, для организации декоративных дорожек.
F50- F200М200-250Умеренная морозостойкость бетона, такой материал применяется для обустройства конструкций с небольшой несущей способностью под открытым небом: пешеходные дорожки, элементы отделки, беседки, автомобильные площадки.
F200-F350М300-350Повышенная морозостойкость, идеальная для частного домостроительства в условиях российских средних широт и даже северных регионов.
F350-F500М400-450Высокая морозоустойчивость, бетон с таким показателем используют в условиях многослойного глубокого промерзания грунта в водонасыщенном состоянии.
F500 и болееМ500 и вышеОчень высокий показатель морозостойкости для бетона используют при строительстве гидротехнических сооружений, промышленных и гражданских объектов на века.

Между показателями прочности и морозостойкости есть связь: чем плотнее структура камня, тем выше оба показателя, а также водонепроницаемость готового бетона.

Потребность в изготовлении морозостойкого бетонного раствора также может возникнуть при зимнем ведении работ.

Повышение морозостойкости бетона

Для разных целей используют бетоны с определенными характеристиками прочности. Например, для возведения фундамента под частный дом в большинстве случаев принимают бетон М300-М400. Ему соответствует показатель морозостойкости F200-F350. Однако, в случае работы с насыщенными водой грунтами существует риск нарушения гидроизоляции и насыщения конструкции влагой.

Чтобы минимизировать риски, показатель морозостойкости искусственно повышают разными способами, что оказывает влияние и на прочность конструкции, и на ее водонепроницаемость. Сделать это можно несколькими способами.

Работа со структурой

Первый способ получить морозостойкий бетон – уплотнить его структуру. Как этого достичь:

  • Если заморозить конструкцию на четвертой неделе полного отвердевания, количество пор в камне уменьшится за счет изгнания воздушных пузырьков;
  • Тщательная трамбовка раствора при укладке уплотняет рабочую массу и избавляет ее от воздуха;
  • Уменьшение количества воды при затворении раствора позволяет увеличить морозостойкость бетона. Достичь эффекта без ущерба помогут чистые заполнители без загрязнений и пыли.

Соблюдение технологии приготовления раствора и его укладки неизбежно приводит к его уплотнению – в тяжелом бетоне не должно быть пор и воздушных пузырьков. Приведенными способами можно получить сопоставимую, но максимальную устойчивость к замораживанию и оттаиванию для заданной группы материала.

Гидроизоляция

Повысить морозостойкость бетона посредством гидроизоляции не получится. Но устойчивость к температурным перепадам значительно вырастет за счет ограждения конструкции от воды – в сухом состоянии камень переносит мороз гораздо легче и практически без последствий.

Именно вода является основным разрушителем бетона при замораживании – превращаясь в лед, она ломает структуру бетона изнутри. Если удалить источник влаги, разрушать конструкции будет нечему.

Существует несколько способов гидроизоляции:

  • Рулонная – самая простая и доступная. Полотна на основе битумного вяжущего настилают на горизонтальные и вертикальные конструкции, швы между ними тщательно прорабатываются мастикой или горелкой.
  • Проникающая – это способ укрепления поверхности бетонной конструкции и ее уплотнения. Соответственно, вода не может проникать в структуру.
  • Обмазочная гидроизоляция эффективна в сочетании с рулонной, поскольку не отличается долговечностью как самостоятельная защита.

Присадки

Марка бетона по морозостойкости может быть существенно увеличена пластифицирующими добавками. Они имеют разное назначение:

  • Специальные для повышения морозоустойчивости. Основной принцип действия – изменение размера пор до мельчайших.
  • Комплексные применяют для улучшения нескольких качеств материала – плотности, водонепроницаемости и устойчивости к температурным перепадам.
  • Гидрофобизаторы препятствуют проникновению воды в структуру камня и исключают риск ее отрицательного воздействия.

Класс бетона по морозостойкости помогут повысить такие присадки:

  • Нитрат кальция и нитрат натрия – ускорители твердения, за счет чего структура быстро уплотняется;
  • Мочевина замедляет твердение, а значит, оставляет время для выхода воздушных пузырьков;
  • С3 – универсальный суперпластификатор комплексного действия;
  • Лигносульфаты – комплексные добавки, улучшающие плотность, прочность и морозостойкость.
Читайте также:  Марка бетона для фундамента частного дома: выбор сорта и пропорции

Укладка бетона зимой

Как повысить морозостойкость бетонного раствора при зимних работах? В таком случае используют только присадки, повышающие прочность, а также ускоряющие твердение с выделением тепла. Именно зимой важно не дать воде кристаллизоваться и расширяться еще на этапе укладки раствора в опалубку.

Кроме присадок необходимо использовать утеплители – важно не дать бетону резко остыть и расслоиться. Обычно только что смонтированные конструкции обогревают пушками или электрическими панелями до набора ими первоначальной прочности.

Морозостойкость бетона: маркировка, определение и как увеличить?

Методы определения морозостойкости

Concretes. Methods for determination of frost-resistance

Дата введения 2014-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2-2015 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены”

Сведения о стандарте

1 РАЗРАБОТАН ОАО “Научно-исследовательский центр “Строительство” (ОАО “НИЦ “Строительство”), Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (протокол от 18 декабря 2012 г. N 41, приложение Е)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Государственный комитет градостроительства и архитектуры

Министерство строительства и регионального развития

Министерство регионального развития

4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 1982-ст межгосударственный стандарт ГОСТ 10060-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

5 В настоящем стандарте учтены основные нормативные положения следующих стандартов:

EN 12390-9:2006* “Испытание затвердевшего бетона. Часть 9. Морозо- и морозосолестойкость. Выветривание”, NEQ (“Testing hardened concrete – Part 9: Freeze – Thaw resistance – Scaling”);
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. – Примечание изготовителя базы данных.

ASTM С 666-2008 “Метод определения стойкости бетона к быстрому замораживанию и оттаиванию”, NEQ (“Test Method for Resistance of Concrete to Rapid Freezing and Thawing”);

ASTM С 671-94 “Метод определения критического расширения бетонных образцов, подвергающихся замораживанию”, NEQ (“Test Method for Critical Dilatation of Concrete Specimens Subjected to Freezing”);

ASTM С 672-98 “Метод определения стойкости поверхности бетона к разрушению при хранении в противогололедных реагентах”, NEQ (“Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals”)

7 ИЗДАНИЕ (июнь 2018 г.) с Поправкой (ИУС N 6-2017)

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ВНЕСЕНА поправка, опубликованная в ИУС N 4, 2019 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на тяжелые, мелкозернистые, легкие и плотные силикатные бетоны, в том числе на бетоны дорожных и аэродромных покрытий, бетоны конструкций, эксплуатирующихся в условиях воздействия минерализованной воды (далее – бетоны), и устанавливает базовые и ускоренные методы определения морозостойкости.

Методы определения морозостойкости, приведенные в настоящем стандарте, применяют при подборе составов бетонов, применении новых материалов и технологий изготовления бетона, а также при контроле качества бетона изделий и конструкций.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия

ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 10197-70 Стойки и штативы для измерительных головок. Технические условия

ГОСТ 11098-75 Скоба с отсчетным устройством. Технические условия

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22685-89 Формы для изготовления контрольных образцов бетона. Технические условия

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования
________________
* В Российской Федерации действует ГОСТ Р 53228-2008.

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 вода минерализованная: Вода, содержащая растворенные соли в количестве 5 г/л и более.

Морская вода является одним из видов минерализованной воды.

3.2 морозостойкость бетона: Способность бетона в водонасыщенном или насыщенном раствором соли состоянии выдерживать многократное замораживание и оттаивание без внешних признаков разрушения (трещин, сколов, шелушения ребер образцов), снижения прочности, изменения массы и других технических характеристик, приведенных в приложении А.

3.3 марка бетона по морозостойкости: Показатель морозостойкости бетона, соответствующий числу циклов замораживания и оттаивания образцов, определенному при испытании базовыми методами, при которых характеристики бетона, установленные настоящим стандартом, сохраняются в нормируемых пределах и отсутствуют внешние признаки разрушения (трещины, сколы, шелушение ребер образцов).

3.4 марка бетона по морозостойкости : Марка по морозостойкости бетона, испытанного в водонасыщенном состоянии, кроме бетонов дорожных и аэродромных покрытий, а также бетонов, эксплуатируемых при воздействии минерализованной воды.

3.5 марка бетона по морозостойкости : Марка по морозостойкости бетона дорожных и аэродромных покрытий и бетона, эксплуатируемого при воздействии минерализованной воды, и определенная при испытании образцов, насыщенных 5%-ным водным раствором хлорида натрия.

3.6 цикл испытания: Совокупность одного периода замораживания и оттаивания образцов.

3.7 основные образцы: Образцы, предназначенные для определения нормируемых настоящим стандартом характеристик после проведения заданного числа циклов замораживания и оттаивания.

3.8 контрольные образцы: Образцы, предназначенные для определения нормируемых настоящим стандартом характеристик перед началом испытания основных образцов.

3.9 определение морозостойкости: Оценка максимального числа циклов замораживания и оттаивания бетона, при котором характеристики бетона остаются в нормированных пределах, а также отсутствуют трещины, сколы, шелушение ребер образцов.

3.10 критическое снижение характеристик образцов: Снижение характеристик образцов при определении морозостойкости до значений, при которых в соответствии с настоящим стандартом прекращают испытания образцов.

4 Общие положения

4.1 Настоящий стандарт устанавливает следующие методы определения морозостойкости:

– базовые методы при многократном замораживании и оттаивании:

первый – для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся в условиях воздействия минерализованной воды,

второй – для бетонов дорожных и аэродромных покрытий и для бетонов конструкций, эксплуатирующихся в условиях воздействия минерализованной воды;

– ускоренные методы при многократном замораживании и оттаивании:

второй – для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся в условиях воздействия минерализованной воды, легких бетонов марок по средней плотности менее D1500,

третий – для всех видов бетонов, кроме легких бетонов марок по средней плотности менее D1500.

Допускается применение других методов определения марок бетонов по морозостойкости при условии обязательного определения коэффициента перехода в соответствии с приложением Б или тарировки предлагаемого метода по отношению к базовым методам.

Образцы, отобранные из конструкций, испытывают по приложению А.

4.3 Условия испытаний для определения морозостойкости бетонов в зависимости от используемого метода и вида бетонов принимают по таблице 1.

Читайте также:  Работа арматуры в бетоне: выбор, подготовка и пути создания сетки

Таблица 1 – Условия испытаний при определении морозостойкости

Метод и марка бетона по морозо-
стойкости

Новости

Морозостойкость бетона это

Морозостойкость бетона это свойство, при котором сохраняется его прочность, несмотря на резкие перепады температуры от замораживания до оттаивания за 1 год.

Само же понятие «морозостойкость бетона», подразумевает под собой количество циклов замерзания и оттаивания за 1 год. И распределяется по градации климатических условий от «низкого» до «экстремально высокого». Купить бетон с доставкой от производителя . В таблице можно увидеть полную классификацию и применение по климатическим условиям морозостойкости бетона. К нашему региону (Северо-Запад), оптимально подходит класс морозостойкости от F50 до F150. Такая морозостойкость бетона гарантирована прослужит долгие годы или даже столетия.

Обозначение морозостойкости

Величину морозостойкости для удобства обозначают английской буквой F, а рядом ставят цифру (F100, F200, F300 и пр.).

Данное значение показывает количество замораживания и оттаивания, которое выдержит образец бетона, не теряя своего качества, по сравнению с не подвергавшимся испытаниям образцом бетона той же марки.

Другими словами, это количество циклов перехода температуры от минус двадцати градусов (-20с) до плюс двадцати (+20с) и обратно. Важно понимать, что один цикл не равен одной зиме, поскольку за сезон в нашей полосе с нестабильным климатом может быть несколько скачков падения к минусовой температуре воздуха и роста к плюсовой.

Морозостойкость зависит от:

  1. Соотношения воды и цемента в составе смеси, поскольку объем воды меньше объема льда, и соответственно при замерзании бетона, объём его массы увеличивается, что приводит к разрушению конструкции. По этой логике не сложно догадаться, что чем больше в составе бетона цемента, тем выше его прочность и морозостойкость;
  2. качества самого цемента;
  3. качества укладки. Чем лучше структура бетона, тем меньше создается пор, а следовательно меньше мест для скопления воды.
Как определить морозостойкость бетона

Морозостойкость бетона той или иной марки бетона определяют в лабораториях. Берут бетонный куб и помещают его в воду примерно на девяносто шесть часов, чтобы он максимально впитал в себя влагу. Затем изделие вынимают из воды и помещают в морозильную камеру, предварительно обтерев излишки жидкости с наружной поверхности куба. В камере поддерживается температура в минус двадцать градусов, затем при полном замораживании куба, его вытаскивают и помещают в водяную баню, температура которой плюс двадцать градусов. Так проходит один цикл. Задача лабораторных исследований полностью протестировать значения морозостойкости, а значит, испытание бетонного куба проводится столько раз, сколько указанно в значении рядом с F. Образец соответствует нормам, если выдерживает нужное количество замораживаний и оттаиваний и не теряет при этом больше пяти процентов прочности.

Заблуждения о морозостойкости

Морозостойкость бетона не имеет никакого отношения к времени его застывания на морозе. Очень часто путают с противоморозными добавками, которые обеспечивают работу с бетоном при минусовой температуре воздуха. Чтобы смесь хорошо схватывалась, к ней примешивают разные добавки такие как ПМД (противоморозная добавка), которые позволяют воде в составе бетона какое-то время не замерзать при нулевой температуре. Наиболее распространенная противоморозная добавка «Цемактив-3», применяется при температуре до минус пятнадцати градусов, вводится в бетонную смесь для устойчивости к замерзанию до начала тепловых работ или, чтобы выдержать морозы на не отапливаемом объекте. Химические добавки этой серии широко применяются в бетонах В30 и В35 в строительстве, как жилищных комплексов, так и промышленных конструкций Санкт-Петербурга.

Морозостойкий бетон: классификация, состав, свойства

Одна из важных характеристик бетона, используемого для строительства в регионах с холодными зимами и температурными перепадами, – морозостойкость. Она определяет свойство материала выдерживать многократное замораживание и оттаивание.

Показателем морозостойкости бетона является марка, равная количеству циклов замораживания и оттаивания до возникновения видимых признаков разрушения, уменьшения прочности более чем на 5%, изменения физических характеристик.

Марка обозначается буквой F и числом, равным максимальному количеству циклов до состояния, обозначенного в нормативе. Эта величина важна для смесей, применяемых при сооружении фундаментов, наружных стен, объектов гидротехнического назначения, опор мостов и других строительных конструкций ответственного назначения.

Классификация морозостойкости бетонов

Виды бетонных смесей по морозоустойчивости регламентируются ГОСТом 25192-2012. Помимо показателя F, морозостойкость могут определять следующие характеристики:

  • F1 – марка, установленная при исследовании материала, находящегося в водонасыщенном состоянии;
  • F2 – марка бетонных смесей, производимых для устройства покрытий дорог и аэродромов или эксплуатации в контакте с минерализованными водами, образцы для исследований насыщают 5% раствором NaCl.

Требования к морозостойкости бетона зависят от запланированной области его применения:

  • ДоF50. Это низкий уровень устойчивости к знакопеременным температурам. Такая смесь применяется для внутренних работ, в подготовительных строительных мероприятиях.
  • F50-F150. Этот материал со средним уровнем морозоустойчивости широко применяется в рядовом строительстве объектов, расположенных в регионах с умеренным, устойчивым климатом.
  • F150-F300. Такие бетоны востребованы при строительстве в регионах с холодным климатом.
  • ВышеF300. Смеси с высокой стойкостью к температурным перепадам применяются для сооружения объектов специального назначения, а также сооружений, эксплуатируемых в тяжелых климатических условиях.

Прочность и показатель морозостойкости всех видов бетона находятся в прямой зависимости: чем выше прочность, тем больше морозоустойчивость материала.

Таблица зависимости класса прочности и морозостойкости бетона

От каких факторов зависит морозостойкость бетона?

Основной параметр, влияющий на способность материала противостоять замораживанию и оттаиванию, – количество пор. Чем оно выше, тем большее количество воды проникает в бетонный элемент.

При отрицательных температурах вода меняет агрегатное состояние, превращаясь в лед с увеличением объема примерно на 10%. Поэтому с каждым циклом бетонная конструкция постепенно деформируется, утрачивая прочностные характеристики.

Вода, проникающая вглубь конструкции, разрушает не только сам бетон, но и вызывает коррозию стальной арматуры.

Способы определения морозостойкости бетона

Способы определения морозоустойчивости регламентирует ГОСТ 10060-2012. Методика актуальна при разработке новых рецептур и передовых технологий, контроле качества при купле-продаже. Для испытаний изготавливают образец кубовидной формы со сторонами 100-200 мм. Циклы замораживания и оттаивания осуществляются в диапазоне -18…+18°C. В соответствии с ГОСТом существует несколько вариантов вычисления этого показателя:

  • базовый многократный;
  • ускоренный многократный;
  • ускоренный однократный.

Если результаты ускоренных испытаний отличаются от результатов базовых, то эталонными считаются показатели базовых исследований.

Основные этапы базовых испытаний водонасыщенных образцов, проводимых в соответствии с ГОСТом:

  • Бетонные кубики насыщают водой и обтирают влажной тканью. Испытывают на сжатие.
  • Исследовательский материал помещают в морозильную камеру для замораживания. Выдерживают заданный режим.
  • Оттаивание производят в специальных ваннах.
  • После оттаивания с образцов щеткой удаляют отслаивающийся материал.
  • Кубики обтирают ветошью, определяют массу и исследуют на сжатие.
  • Обрабатывают результаты испытаний.

Пониженную морозостойкость материала можно определить и подручными методами. Конечно, результаты таких исследований не могут использоваться при составлении проектной документации.

  • Визуальный осмотр. О низкой устойчивости к знакопеременным температурам свидетельствует наличие трещин, бурых пятен, расслаивания, шелушения.
  • Определение водопоглощения. Если этот показатель равен 5-6%, то устойчивость к низким температурам будет пониженной.
  • Высушивание влагонасыщенного образца на солнце. Его растрескивание сигнализирует о пониженной морозостойкости.

Способы повышения морозостойкости

Повысить морозоустойчивость бетона можно несколькими способами:

  • Изолировать бетонный элемент от неблагоприятного внешнего воздействия с помощью обмазочных и окрасочных материалов, пропиток.
  • Использовать цемент более высоких марок. Чем прочнее вяжущее, тем выше морозоустойчивость готового бетонного элемента.
  • Получить плотную структуру материала путем тщательного уплотнения различными способами и создания благоприятных условий твердения бетонной смеси
  • Изготовить морозостойкий бетон можно путем введения в его состав специальных присадок.

Подробнее рассмотрим виды и принцип действия добавок:

  • Поверхностно-активные вещества. Обеспечивают образование плотной структуры.
  • Присадки, способствующие появлению шаровидных пор. Вода, проникшая в бетонную конструкцию, при замерзании выталкивается в эти пустоты, поэтому структура материала при изменении агрегатного состояния воды не повреждается.
  • Суперпластификаторы. Увеличивают плотность, повышают водонепроницаемость, а следовательно, показатели морозостойкости.
  • Добавки, улучшающие водонепроницаемость бетонного элемента и его внутреннюю структуру. К ним относятся «Дегидрол», «Пенетрон Адмикс», «Кристалл».

Присадки для бетона с глиноземистым цементом обычно не применяются, поскольку они могут не улучшить, а снизить характеристики материала.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Добавить комментарий